

Development and Validation of an Advanced Multiphase Glass Furnace Model

Presenter: Brian Golchert - ANL

Argonne National Laboratory

A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Presentation Outline

- Program Overview
 - Goals, Technical Approach, Program Description
 - Program Status
 - Program 'completed' on 12/31/03 as scheduled
- Technical Progress/Accomplishments
 - Brief Overview of Program Accomplishments
 - Continued application of GFM to industrial furnaces
- Technology Transfer of GFM Code to Industry
 - Initiated in FY04
 - Initial Technology Transfer Results
- Broadened the 'Vision' of GFM

Program Overview and Status

Program Goals

- Advance the "State of the Art" in Glass Furnace Modeling/Simulation
- Provide Industry with a Validated Furnace Model that Can be used to Analyze Different Types of Furnaces
- Create a Code that can be Used by Engineers, not Only Computational Experts
- Make the Validated Code (Executable and Source Codes)
 Readily Available to Industrial Users.

Program Description

- Two Part Program Initiated in 1998
- Supported by Industrial Consortium
 - Techneglas, Inc. Libbey, Inc. Visteon
 - Owens Corning Osram Sylvania
- University Participants
 - Purdue University Mississippi State University
- Five-Year Program Schedule
 - Part I Program completed
 - Part II Program completed at end of CY 03
- Deliverable: User Friendly, Validated, Glass Furnace Model for Use by Engineers
 - A step change in modeling capability
 - Technical Support is Being Provided via a Follow-On Tech Transfer Program

Technical Approach for Achieving Program Goals

- ANL's Multiphase Reacting Flow CFD Codes (ICOMFLO, ICRKFLO) used to Develop a Coupled Glass Furnace Model (GFM)
 - Incorporated advanced phenomenological models for spectral radiation heat transfer, batch melting, foam layer formation, etc.
- Construct Simulations of Selected Furnaces
- Develop/Install Diagnostics in Selected (3) Furnaces to Acquire Data for Code Validation
- Validate Furnace Models with Data Acquired
- Demonstrate the Utility and Benefits That Can Be Derived From the Use of GFM Code
 - Conduct extensive parametric, sensitivity and optimization studies to identify opportunities to improve furnace performance

PROGRAM WBS AND SCHEDULE

Technical Progress and Accomplishments

Accomplishments During Program

- Developed a Coupled Glass Furnace Model (GFM)
 - Incorporated advanced phenomenological models for spectral radiation heat transfer, batch melting, pollutant formation, etc.
- Initial Workshop Held at OSU to Introduce GFM to the Industry
 - Demo code given to 32 attendees
- Code Validation Data Obtained from Three Furnaces with Different Operation and Design Characteristics
 - Cross fired oxy-fuel furnace, a regenerative end port fired furnace, and a recuperative fiberglass furnace
- Advanced Version of GFM 2.0 Developed and Validated with in situ Data from Three Furnaces
 - Robust pre and post-processor
 - Spectral radiation computed throughout furnace volume

Accomplishments During Program (cont'd)

- GFM 2.0 Beta Tested by Industrial Participants (IP)
- IP's Built Simulations and Used Them to Conduct Parametric, Sensitivity, & Optimization Studies
 - Parameters varied specified by IPs
 - Studies conducted jointly by IPs and ANL
- Multiphase Analytical Capabilities of GFM 3.0 (Final Version of Code)
 - Transport and reaction of solid, gas, and liquid species is computed throughout glass melt
 - Chemical reactions in melt and batch incorporated
 - Foam formation/thickness calculated
 - Quality indices incorporated
 - Gas release from melt to combustion space
 - GFM3.0 to be released to licensees of GFM2.0

Continued Application of GFM by Industry

- A Techneglas melter developed an operational problem as a result of an obstruction that led to a significant decrease in quality thus causing the operators to reduce the pull
- Parametric studies were/are being conducted to help:
 - Identify the cause of the reduction in quality
 - Determination if operational parameters can be adjusted to allow increasing the pull without sacrificing quality

Computational Results

Quality Issues in Techneglas Furnace

- Two methods are available to investigate quality issues with the GFM
 - 'Traditional' quality indices as an output of the GFM
 - Particle tracing through a commercial visualization code **FIELDVIEW**
- 'Traditional' residence time quality indices indicate a bimodel distribution
 - Shows possible reason for quality problems. Shortest residence time in the region of the obstruction

Techneglas Furnace Forehearth

- John Chumley of Techneglas has extended the model for the melt and the combustion space to model the Pittston B forehearth
- Preliminary melt calculations are shown below.

The Glass Furnace Model Technology Transfer (GFM-TT) Program

GFM-Technical Transfer Objective

 Disseminate and Promote Widespread Use of the GFM Code Throughout the Glass Industry

The GFM-TT Objective Will be Achieved By

- Widely Disseminating Information on GFM Code to Industry
 - Collaborating with GMIC
 - Brochure developed describing code capabilities and availability
 - Broad mailing by GMIC to Industry
- Making GFM Code Readily Available to Interested Users
 - Free trial license available for six to nine month period
- Providing Technical Support for the GFM Code Users during the Free Trial Period
- Promoting Development and Implementation of Long Term Technical Support Mechanism for the GFM Code User

Dissemination of Information on the GFM Code and Response from Industry

- A Brochure has been prepared and sent to over 90 glass company contacts. This brochure describes:
 - Code and its capabilities
 - How interested users can license code
 - How technical support will be provided
 - Availability of a FREE trial license!
- Brochure Mailing Handled by GMIC
 - Cover letter urges interested users to obtain a trial license
- A Follow-up Electronic Mailing was Made Last Week

Mechanism for Licensing GFM Code to Interested Users

- GFM2.0 Code is available at the ANL Software Shop
 - Accessible via internet htttp://softwareshop.anl.gov/
 - Site maintained by ANL Office of Technology Transfer
 - Handles all licensing for ANL
 - Allows interested users opportunity to license code online
 - Terms, conditions, and procedures for licensing code clearly outlined
- After receiving trial license, user contacts ANL to arrange for free training on the use of the code
 - Training is usually done during one afternoon and the following morning
 - Begin working with ANL staff on your furnace of interest and learn how to use the code at the same time
- At the end of the free trial period, users will be required to pay a ONE TIME nominal licensing fee to continue using the code

Technical Transfer Status as of 16 June 2004

- Six Trial Licenses have been Signed
 - PPG (2)
 - St. Gobain
 - Guardian
 - St. George Crystal
 - Anchor Hocking Glass
- Additional companies have indicated they will likely apply for trial licenses
- Training has been conducted for three licensees

Mechanism for Providing Technical Support to GFM Code Users

- An Attempt will be made to Establish a GFM Code User Group (CUG)
 - Each licensee will automatically become a member
 - Each member entitled to technical support services
- Technical Support Services That Will Be Available to CUG Members
 - Individual instruction on use of code at ANL
 - Expect average user will require 2 days
 - User will create and run furnace simulations
 - Additional support provided on an as needed basis
 - Hours available will depend on number of users (CUG members)
 - Estimated minimum of 40 hours/year
 - Customization services will be provided within allowable hour limits
 - Modification of code when applied to unique/unusual geometries
 - Source code expected to evolve & be improved
- Ideally, the CUG Members will be Issued Improved Versions of GFM as the Code Evolves
- Technical Support will be Provided at No Cost Over 6-9 Month Period
 - Levels to be compatible with resources provided by DOE

Long Term Technical Support

- Need and Mechanism for Continuing Support to Be Determined by CUG Membership
 - At conclusion of 9 month DOE Support Period
- CUG Would Ideally Evolve into an Industry Organization that
 - Supports continued development/improvement of the GFM codes
 - Funding provided by membership dues and possibly DOE
 - Ensures that technical support for the GFM is available
 - Continues to maintain a "state of the art" modeling capability for the industry

Going beyond the original frontier.....

Expanded 'Vision' for the Glass Furnace Model

- GFM can be the 'repository' of many of the advances achieved in the DOE Glass projects such as
 - Alfred's material property database
 - Sandia's crown corrosion work
 - BOC's batch preheat work
- Incorporation of the results from these projects into the GFM achieves the following:
 - Enhanced modeling capabilities
 - Creates a commercialization vehicle for these DOE projects
 - Increased likelihood that the results from all of these projects will culminate in energy savings to the industry

Center for Glass Research Database

- A significant effort has been expended by the DOE and by Alfred University (CGR) to develop a high temperature materials database specifically for computational modeling
- CGR has completed their database and it covers the majority of glasses found in industry
- CGR, ANL, and DOE are discussing the incorporation of the CGR database into the GFM.
 This would allow the user to 'point and click' on a particular glass composition in order to obtain the required thermophysical properties needed
 - Using the database in the GFM would provide the user ready access to hard-to-find thermophysical data

Corrosion Modeling in Glass Furnaces

- The DOE funded Sandia project on crown corrosion has developed models and chemical reactions to determine the likely locations of corrosion based on species concentration and temperature
 - All variables available from the GFM calculations
- Based on observations in furnaces and the results from several modeling efforts, a crude, first order corrosion model in the melt has been developed.

Implementing Sandia's Model into the GFM

- The Sandia model indicates that the OH concentration and the temperature are key components to crown corrosion
- A crude model similar to Sandia's model has been incorporated into the GFM
- Gaseous OH from the batch reactions is transported throughout the combustion space
- OH concentration and wall temperature give indications of locations of high crown corrosion

Estimate of corrosion

Using Results from GFM to 'Predict' Corrosion/Erosion in the Melt Refractory

Computed velocity field near back wall

- After several visits and talks with plant personnel, it became apparent that there was a relationship between liquid glass velocity and corrosion/erosion of refractory material.
- The computed velocity field is in very good agreement with the observed wear pattern
- GFM can be used to estimate locations of high refractory wear caused by high melt velocities

Effect of Batch Pre-heating

- The DOE funded a program to investigate the effects of pre-heating the batch using the exhaust heat from the combustion space
- The GFM can model the effects of batch pre-heating on the temperature and flow field in the melter.

Additional Work Needed for Batch Pre-Heating

- There are two main components for modeling batch preheating
 - Thermal effects (easy)
 - Gas release effects
- Thermal effects of batch preheating already in the GFM
- Work is being done to incorporate the effect of preheating on the gas release using models/data derived by Purdue University.

